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GROUP CLASSIFICATION OF EQUATIONS OF THE FORM y′′ = f(x, y)

UDC 517.91L. V. Ovsyannikov

The problem of classification of ordinary differential equations of the form y′′ = f(x, y) by admissible
local Lie groups of transformations is solved. “Standard” equations are listed on the basis of the
equivalence concept. The classes of equations admitting a one-parameter group and obtained from
the “standard” equations by invariant extension are described.
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Introduction. The problem of group classification of differential equations was first posed by Norwegian
mathematician Sophus Lie, the founder of the theory of continuous groups [1]. He also began to solve the problem
of group classification of the second-order ordinary equation y′′ = f(x, y, y′) and proved that this equation admits
no more than an eight-parameter transformation group of the space R2(x, y) and the maximum is reached if and
only if this equation is equivalent to the linear equation y′′ = ϕ(x)y′ + ψ(x)y + ω(x). In the present paper, the
problem of group classification of such equations is solved in the simpler case where the right side does not depend
on the first derivative. This condition appears very stringent and leads to a relatively small list of the possible
forms of the equations.

The solution of the group classification problem is related to the concept of equivalence of equations of
this form with respect to transformations. We consider smooth, locally one-to-one maps (transformations) e:
(x, y, f) → (x1, y1, f1) of the space R3(x, y, f) that act by the formulas

x1 = F (x, y), y1 = G(x, y), f1 = H(x, y, f) (1)

and satisfy the condition
∂(x1, y1, f1)
∂(x, y, f)

≡ (FxGy − FyGx)Hf 6= 0. (2)

Definition 1. A map e (1), (2) is called an equivalence transformation (ET) of the equality y′′ = f if it transforms
the equation

y′′ = f(x, y) (3)

to an equation of the same form (here y′′1 = d2y1/dx
2
1):

y′′1 = f1(x1, y1). (4)

In this case, Eqs. (3) and (4) and the functions f(x, y) and f1(x1, y1) are called equivalent.
The influence of the ET concept on group classification is determined by the fact that equivalent equations

admit similar groups [2] and ET is a similarity transformation. That is, if (3) admits the group G, then (4) admits
a group similar to it G1 = e(G). It is clear that the indicated correspondence is a set-theoretical criterion of
equivalence, according to which the set of equations of the form (3) is split into classes of equivalent equations.
Therefore, the group classification problem reduces to the following two problems: (a) to describe the classes of
equivalent equations; (b) to find the admissible group for any (simplest) representative of each class.

Obviously, all possible ETs form the group E = {e} of transformations of the space R3(x, y, f), which is
called the equivalence group of equations of the form (3). To solve problem (a), it is first necessary to describe this
group.
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1. Equivalence Group. Calculation of the expression for the derivative y′′1 = d2y1/dx
2
1 in the variables

(x, y) obtained by the substitution (1) gives the relation

(Fx + y′Fy)3y′′1 = (Fx + y′Fy)(Gxx + 2y′Gxy + y′
2
Gyy + y′′Gy)

− (Gx + y′Gy)(Fxx + 2y′Fxy + y′
2
Fyy + y′′Fy).

Transformation of Eq. (3) to Eq. (4) by the substitution (1) is possible if and only if this relation does not contain
terms with the first derivative y′. Therefore, it splits into powers of y′, leading to the equalities

F 3
xf1 = Jf + FxGxx −GxFxx; (1.1)

3F 2
xFyf1 = FyGxx −GyFxx + 2FxGxy − 2GxFxy; (1.2)

3FxF
2
y f1 = FxGyy −GxFyy + 2FyGxy − 2GyFxy; (1.3)

F 3
y f1 = FyGyy −GyFyy, (1.4)

where J = FxGy − FyGx 6= 0.
By virtue of (2), from (1.4) it follows that Fy = 0 and, hence, F = α(x) and equalities (1.2) and (1.3) are

simplified:

GyFxx = 2FxGxy, Gyy = 0. (1.5)

In this case, Eq. (1.1) becomes

F 3
xf1 = FxGyf + FxGxx −GxFxx. (1.6)

The general solution of system (1.5) is G = β(x)y + γ(x) with α′′β = 2α′β′ and α′β 6= 0, where the last inequality
follows from the condition J 6= 0. Substitution of the expressions for F and G into (1.6) gives the relation

α′
3
f1 = α′βf + (α′β′′ − α′′β′)y + (α′γ′′ − α′′γ′),

which is simplified by the substitution y = (y1 − γ)/β to

α′
2

β
f1 = f −

( 1
β

)′′
y1 +

(γ
β

)′′
.

Thus, we obtain the general ET

x1 = α(x), y1 = β(x)y + γ(x), α′′β = 2α′β′ (α′β 6= 0),

(α′2/β)f1 = f − (1/β)′′y1 + (γ/β)′′,
(1.7)

which depends on two arbitrary functions, β(x) and γ(x), and two arbitrary constants which arise from the calcu-
lation of the function α(x).

For the further consideration, it is useful to note some particular forms of ETs.
Lemma 1. Let f0(x, y) be a fixed function. Then,
(i) The function f(x, y) = Af0(Bx+C,My+N) with constants A, B, C, M , N is equivalent to the function

f1(x1, y1) = (AM/B2)f0(x1, y1) for B 6= 0 or f1(y1) = AMf0(y1) for B = 0 [f0 = f0(y)];
(ii) The function f(x, y) = f0(x, y) + p(x)y + q(x) is equivalent to the function f1(x1, y1) = A(x1)f0(x1, y1),

where A(x1) = (β/α′2)(x1); the functions α and β are obtained from the equations β(1/β)′′ = p(x) and βα′′ = 2β′α′,
and the dependence of x on x1 is obtained by inversion of the function x1 = α(x);

(iii) The function f0(x, y) is equivalent to the function f1(x1, y1) = x−3
1 f0(1/x1, y1/x1).

Proof. All statements follow from the ET (1.7). In case (i) with B 6= 0 the ET x1 = Bx+C, y1 = My+N

is used, and for B = 0, the ET x = x1, y1 = My +N is used. In case (ii), the right side of expression (1.7) for f1
by virtue of the equality y1 = βy + γ is brought to the form

f − [(1/β)′′ − p/β]y1 + [(γ/β)′′ − pγ/β + q]

and the choice of β and γ as solutions of the equations

(1/β)′′ = p/β, (γ/β)′′ = pγ/β − q
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leads to relation (1.7) in the required form (α′2/β)f1 = f0. Case (iii) is obtained from (1.7) with the functions
α = 1/x, β = 1/x, and γ = 0.

In particular, if one sets f0 ≡ 0, then in case (ii) the function f is linear in y and is equivalent to the function
f1 = 0.

2. Admissible Operators. The operators of the one-parameter subgroups admitted by Eq. (3) are sought
in the form

X = ξ(x, y) ∂x + η(x, y) ∂y. (2.1)

The standard algorithm for calculating such operators (see [2]) leads to the following determining equations
(DEs):

ξyy = 0, ηyy = 2ξxy, 3fξy = 2ηxy − ξxx; (2.2)

ηxx + (ηy − 2ξx)f = ξfx + ηfy. (2.3)

Here the function f = f(x, y) is the right side of (3).
If the function f is linear in y, i.e., if Eq. (3) is a linear equation, this function is equivalent to the function

f ≡ 0. In this case, system (2.2), (2.3) has the general solution

ξ = a(x)y + b(x), η = a′(x)y2 + c(x)y + d(x),

where a′′ = c′′ = d′′ = 0 and b′′ = 2c′. This gives the well-known eight-dimensional admissible Lie algebra of
operators.

Next, it is assumed that fyy 6= 0. Then, the third of Eqs. (2.2) results in the equalities ξy = 0 and 2ηxy = ξxx.
In this case, the subsystem (2.2) is easily integrated and its general solution is ξ = a(x), η = b(x)y + c(x), where
2b′ = a′′.

Thus, the admitted operators (2.1) have the form

X = a(x) ∂x + [b(x)y + c(x)] ∂y, a′′ = 2b′ (2.4)

and the DE (2.3), namely,

b′′y + c′′ + (b− 2a′)f = afx + (by + c)fy (2.5)

remains, which is used to classify the nonlinear equations (3).
First, it should be noted that for the admissible operators, the inequality a 6= 0 should necessarily hold.

Indeed, if a = 0, then b = const. Then, differentiation of the DE (2.5) with respect to y yields the relation
(by + c)fyy = 0, and for fyy 6= 0, we have b = c = 0, i.e., the operator X is zeroth.

Next, we use the main property of ETs: if an ET transforms Eq. (3) to (4), the ET transforms an admissible
group for (3) to an admissible group for (4).

Let (2.4) be a fixed admissible operator. Under the action of the ET (1.7), this operator is converted to an
operator of the same form [X1 = a1 ∂x1 + (b1y1 + c1) ∂y1 ] with the coordinates

a1 = aα′, b1 = aβ′/β + b, c1 = aγ′ − b1γ + cβ, (2.6)

which should be considered as functions of x1.
Lemma 2. The following properties are valid:
(i) the constant a′ − 2b = n is an invariant of any ET;
(ii) if n = 0, the operator (2.4) is equivalent to the operator X1 = ∂x;
(iii) if n 6= 0, the operator (2.4) is equivalent to the operator X1 = nx∂x.
Proof. (i) Relations (2.6) imply the identity

da1

dx1
− 2b1 =

da

dx
− 2b+ a

(α′′
α′
− 2

β′

β

)
, (2.7)

in which the expression in parentheses is equal to zero by virtue of (1.7);
(ii) By virtue of (2.7), it is possible to find an ET of the form (2.6) such that a1 = 1 and b1 = c1 = 0;
(iii) Similarly, an ET of the form (2.6) exists such that a1 = nx1 and b1 = c1 = 0.
Corollary 1. If Eq. (3) is admitted by a certain operator of the form (2.4), it is equivalent to an equation

of the same form that admits the operator X1 = ∂x or the operator X1 = x ∂x.
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3. Group Classification. The classification is performed by the following scheme.
Step s1: the general form of the function f(x, y) admitting the operators X1 = ∂x or X1 = x ∂x is established;
Step s2: the expression obtained for f is substituted into the general DE (2.5) and the latter is used to find

all functions f that provide the extension of the one-dimensional subalgebra with the operator X1 to the complete
admissible Lie algebra of operators.

First Possibility: X1 = ∂x. Step s1 yields f = f(y), and step s2 yields DE

b′′y + c′′ + (b− 2a′)f(y) = (by + c)f ′(y). (3.1)

Double differentiation with respect to y gives the equation

(b+ 2a′)f ′′ + (by + c)f ′′′ = 0. (3.2)

If f ′′′ = 0, then f is equivalent (Lemma 1) to the function f = y2. Substitution into (3.1) gives the DE

b′′y + c′′ + (b− 2a′)y2 = 2y(by + c),

which is split into powers of y taking into account relation (2.4) to give to the following expressions (a1 and a0 are
constants):

a = a0 + a1x, b = −2a1, c = 0.

Hence, Eq. (3) with f = y2 admits, in addition to X1 = ∂x, only one operator X2 = x ∂x − 2y ∂y.
In the case f ′′′ 6= 0, Eq. (3.2) implies the equality (f ′′/f ′′′)′′ = 0, whence it follows that

f ′′′/f ′′ = 1/(Ay +B) (3.3)

with some constants A and B. Here two subcases are possible: A 6= 0 or A = 0 and B 6= 0.
If A 6= 0, then integration of (3.3) and the condition f ′′ 6= 0 give the functions f which are equivalent

(Lemma 1) to one of the following functions:

f = Nyk (k 6= 0, 1, 2), f = N ln y, f = Ny ln y,

where N = const. Substitution into (3.1) shows that the last two functions do not give new operators. The DE (3.1)
with the function f = Nyk becomes

b′′y + c′′ + (b− 2a′)Nyk = (by + c)kNyk−1.

Splitting into powers of y gives the relations

2a′ + (k − 1)b = 0, b′′ = 0, c = 0.

The first of them, by virtue of (2.4), leads to the equality

(k + 3)b′ = 0

and entails the alternative: b′ = 0 or k = −3. If b′ = 0, i.e., b = 2b1 = const, we have a′ = −(k − 1)b1 and
a = a0 − (k − 1)b1x. The constant b1 gives one additional operator X2 = (k − 1)x ∂x − 2y ∂y, which was already
obtained above in the case k = 2. If k = −3, the previous relations lead to the expressions a = a0 + 2b0x + b1x

2

and b = b0 + b1x and the constants b0 and b1 give two additional operators

X2 = 2x ∂x + y ∂y, X3 = x2 ∂x + xy ∂y.

In the subcase A = 0, integration of Eq. (3.3) leads, with accuracy up to the ET, to the function f = ey.
With this function, Eq. (3.1) implies the equations b = 0, 2a′ = −c, and c′′ = 0, which, together with (2.4), have
the general solution

a = a0 + a1x, b = 0, c = −2a1.

The constant a1 gives the additional admissible operator X2 = x ∂x − 2 ∂y.
Second Possibility: X1 = x ∂x. Step s1 gives f = x−2g(y) with an arbitrary function g(y), and at step s2,

we obtain the DE

x3(b′′y + c′′) + [2(a− xa′) + xb]g(y) = x(by + c)g′(y). (3.4)

Equation (3.4) is analyzed similarly to (3.1). In this case, only one function, which is equivalent to g(y) = y−1,
is distinguished; with this function, one additional operator X2 = x2 ∂x +xy ∂y is admitted. However, the equation
y′′ = x−2y−1 is equivalent to the equation y′′ = y−1 by virtue of Lemma 1 [see (iii)].
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TABLE 1

f X1 X2 X3

f(y)∗ ∂x 0 0
ey ∂x x ∂x − 2 ∂y 0

yk, k 6= −3 ∂x (k − 1)x ∂x − 2y ∂y 0
± y−3 ∂x 2x ∂x + y ∂y x2 ∂x + xy ∂y

x−2g(y)∗ x ∂x 0 0

The results of the group classification of the nonlinear equations (3) are presented in Table 1, where the first
column gives paired nonequivalent forms of the function f (the asterisk indicates that the function is arbitrary),
and the basis operators of the admissible Lie algebra are listed in the next three columns.

4. Invariant Extensions. When using Table 1, one should take into account the following. Since for all
operators from this table, the equalities b′′ = c′′ = 0 are valid, then the DE (2.5) for the admissible operators (2.4)
can be written as

(b− 2a′)f = X(f). (4.1)

From this it follows that if Eq. (3) with the function f0(x, y) admits any operator X and I = I(x, y) is any
invariant of this operator, then Eq. (3) with the function f = f0I also admits the same operator X. This follows
from the fact that X(I) = 0, hence, X(f0I) = X(f0)I, and from Eq (4.1).

This operation can be called an invariant extension of the sets of equations that admit even one of the
operators listed in Table 1.

For example, the operator X2 with the invariant I0 = x2yk−1 extends the equation y′′ = yk (k 6= −3) to the
family of equations y′′ = ykIm

0 = x2myk+m(k−1), i.e., y′′ = xpyq, which admit X2, where

p = 2m, q = k(m+ 1)−m (4.2)

can be any real numbers.
However, it should be taken into account that such extension can lead to nonequivalent (in the sense of the

definition of ETs given in the introduction) equations. In particular, the equation y′′ = yk is nonequivalent to the
equation y′′ = xpyq with the exponents (4.2) for m 6= 0 because they admit nonsimilar groups.

Nevertheless, the invariant extension operation is useful in applications to particular problems because if
Eq. (3) admits even one operator, it reduces to a first-order equation and a quadrature.

In conclusion, it is pertinent to note that the analysis performed in the present paper does not give a complete
solution of the equivalence problem, which consists of establishing the equivalence criterion for a priori given Eqs.
(3) and (4). Such criterion can be obtained only using the theory of differential invariants.
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